
AMR Application Development with
the SAMRAI Library

Rich Hornung

hornung@llnl.gov
www.llnl.gov/CASC/SAMRAI

Workshop on Adaptive Mesh Refinement
LACSI Symposium 2004

Santa Fe, NM
October 12, 2004

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

UCRL-PRES-207117

This work was performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National

Laboratory under contract No. W-7405-Eng-48.

Structured AMR employs a dynamic
“patch hierarchy”

SAMRAI goal – minimize constraints & maximize flexibility for applications:
problem formulation for locally-refined mesh

(serial) numerical routines for individual patches

inter-patch data transfer operations (copy, coarsen, refine, time int, …)

SAMR mesh and data:
hierarchy of nested “patch” levels

low overhead mesh description

cells clustered into patches of
varying size favorable
comp/comm volume ratios

data mapped to patches simple
model of data locality

any grid system that maps to
logically-rectangular index space

SAMRAI is an object-oriented “toolbox” of
classes for SAMR application development

Mesh
Management

Tool Box

Patch Hierarchy Data Transfer

Patch Data

Grid Geometry

Integration
Algorithms

Linear/Nonlinear
Solvers

Application
Utilities

Math Ops Multiblock

Hornung, Kohn, “Managing Application Complexity in the SAMRAI Object-oriented
Framework”, Concurrency Computat.: Pract. Exper. 14:347-368 (2002)

“d
ep

en
ds

 o
n”

A SAMRAI "patch" contains all data on a
box region of the computational mesh

Patch
Box Array<PatchData>

Patch Data
allocate(Box b)
copy(...)
packStream(...)
unpackStream(...)

All patch data
objects

obey the same
interface

NodeCell Face Outerface

Outernode IndexSet<TYPE> Particles Other user-
defined
types

Variable object
— defines a data quantity; type,

(centering), (depth)
— abstract base class (interface)

attributes:
– name (string)
– unique instance id (int)

— creates data object instances
(abstract factory)

— Variable objects usually persist
throughout computation

PatchData object
— represents data on a “box”
— abstract base class (interface)

attributes:
– interior box (Box)
– exterior box (Box)
– ghost cell width (IntVector)

— interface for all data
communication (strategy)

— (usually) created by factory
associated with variable

— PatchData objects are created
and destroyed as mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

SAMRAI Variable and PatchData delineate
“static” and “dynamic” data concepts

SAMRAI communication framework
centers around three abstractions

Communication Algorithm supports solution-algorithm level description of
data transfer phases of computation
— expressed using variables, coarsen/refine operators, etc.
— independent of AMR mesh configuration

Communication Schedule manages data transfers for algorithm
— automatically treats complexity of different data types (e.g., centerings)
— depends on AMR mesh configuration

“Patch Strategy” is interface to user-defined coarsen/refine operations and
boundary conditions

SAMRAI supports data movement involving arbitrary combinations
of variable quantities and operations within a single data transfer

Continuum
representation (Euler,
Navier-Stokes) away

from interface

fluid A fluid B

DSMC representation
at interface

Adaptive Mesh and Algorithm Refinement
(AMAR) refines mesh and numerical model

AMR is used to refine continuum
calculation and focus particles

Algorithm switches to discrete
atomistic method to include physics
absent in continuum model

Wijesinghe, Hornung, Garcia, Hadjiconstantinou, ““Three-dimensional Hybrid Continuum-Atomistic
Simulations for Multiscale Hydrodynamics”, J. Fluid. Eng (to appear).

Particles resolve molecular-scale
dynamics of mixing region

Pre-existing particle data structures
coupled to SAMRAI via patch data interface

DsmcPatchData* particles = patch->getPatchData(. . .);
particles->advance(dt);

Patch

PatchData

DSMC
PatchData

Serial DSMC
data structures

and routines

Communication algorithms describe data
transfers needed for solution method

copy particles

fill continuum
data

For example, integration of particle
regions requires both continuum and
particle boundary data for each patch

• Create algorithm to fill data
RefineAlgorithm fill_alg;

• Register variable operations with algorithm:
• density refined from coarser, copied from fine, BCs set

fill_alg.registerRefine(rho_old, // destination
rho_old, rho_new, // sources
..., “CONSERVATIVE_INTERP”);

• particles copied from neighboring patches
fill_alg.registerRefine(particles, // destination

particles, // source
...);

Amortize cost of creating send/receive sets over multiple
communication cycles

Communication schedules create and
store data dependencies on mesh

Send Set Receive Set

Particles

message buffer

single
MPI sendCell Data (double)

packStream(...);

packStream(...);

Data from multiple sources is packed into one message stream

• Create schedule to fill data
RefineSchedule fill_sched =

fill_alg.createSchedule(
hierarchy, level, ...);

• Invoke data fill operations
fill_sched.fillData(time, ...);

ALE-AMR combines ALE integration with AMR

Moving-deforming AMR grid

3D ICF hydro
calculation

small-scale RM
instability

Anderson, Elliott, Pember, “An Arbitrary Lagrangian-Eulerian Methods with Adaptive Mesh
Refinement for the Solution of the Euler Equations”, J. Comp. Phys. 199(2): 598-617 (2004).

Advantages of ALE (multiple materials, moving interfaces)
Advantages of AMR (dynamic addition & removal of mesh points)

ALE-AMR manages deforming grids by
specializing SAMRAI grid geometry

Manages “index
space” coordinates

Manages “physical
space” coordinates

ALE-AMR grid
coordinates are
presented as “node”
patch data

GridGeometry

DeformingGrid
Geometry

PatchHierarchy

CartesianGrid
Geometry

ALE-AMR specializes
interpolation/coarsen operators

Operator interfaces define interpolation/coarsen operations

Refine/Coarsen
Operator

ALE-AMR
operator

Refine/Coarsen
Schedule

Cartesian
operator

Communication schedule
provides local copy of

data required for operator

Operators transfer data
between patches

Interfaces for more complex operations (e.g., those needing
multiple patch data quantities) are also used

Immersed boundary methods model fluid
structure interactions

Griffith, Peskin (NYU) are developing an
electrical-mechanical heart model

combining immersed boundaries and
AMR (SAMRAI)

Fluid domain:
u(x,t),p(x,t),f(x,t)

Structure domain:
X(s,t), F(s,t)

SAMRAI supports other embedded
geometry using other packages

Urban Dispersion Modeling project (Wissink, Kosovic, Chand, Petersson, et al.)

AMR embedded geometry grid in SAMRAI
Eleven

Inside/outside
determination

Eleven
Inside/outside
determination

SAMRAI
Mesh

construction

SAMRAI
Mesh

construction

Triangulated surf grid
AMR volume grid

Eleven
(Overture)
Eleven

(Overture)

“Shapefile”

Cubes
(Berger,
NASA)

Cubes
(Berger,
NASA)

IndexVariable and IndexData classes manage data
quantities on irregular index sets

SAMRAI index data supports embedded
boundary as “patch data”

IndexVariable<TYPE> ivar(“name”)
IndexData<TYPE> idata(Box& box, ghosts)

“TYPE”

Required methods
TYPE()
TYPE& operator=(const TYPE&)
getDataStreamSize(Box&)
packStream(...)
unpackStream(...)

CutCell type describes internal boundary and
state information along boundary

e.g.

Gyrokinetic edge plasma code has
unique mesh structure requirements

Collaborators: Nevins, Dorr, Hittinger, et al.

a

c

SeparatrixCore

Divertor plates

a

b

b

c

d

d

D
iv

er
to

rp
la

te

D
ivertorplate

Core

Major mesh/data issues:

Complex interblock connectivity

PDF representation:
— rep v as 2d array on 3d grid (for

streaming)?
— rep f on 5d grid* (for collision)?
— range & resolution of v-space?
*SAMRAI supports AMR grids of arbitrary dimension

),(vxf vr

Computational
Cost

Accuracy

Localized
functions are

represented on
locally-refined

grid

Cut tails of
localized orbitals

O(N)

O(N3)

New approach:
O(N ln N)

Using AMR for electronic structures may greatly
improve scaling while preserving accuracy

Fattebert, Gygi, Hornung, Wissink

“Locally-active” data support in SAMRAI

Fn 0

Fn 2

Fn 1

Fn 0 exists
on these
patches

Fn 2 exists
on this patch

Fn 1 exists
on this patch

All functions exist
on coarsest level

Functions exist on
select patches of

finer level(s)

Typical AMR applications
(e.g., CFD) use data
quantities defined on all
patches in AMR grid
hierarchy

New AMR electronic
structures algorithms
require data for each
function on subset of AMR
hierarchy patches

SAMRAI communication
infrastructure extended to
support this

AMR solver issues
Solver libraries are not typically “AMR-aware”
— Vector structures don’t support complexity of AMR data configurations
— AMR requires frequent re-configuration of solvers and vectors

– vector space dimension changes size as mesh changes
– only parts of vectors require change during adaptive meshing

Ideally, we would like to access data “naturally”:
— nonlinear solver vector ops, mat-vec ops; mat-vec can be “matrix-free”
— linear solvers vector kernels, mat-vec ops; special optimizations
— applications discretizations, residual comp; need to know AMR grid

Loose coupling between vector concept and data storage
— variable/vector definition independent of mesh is key:

– for treating frequent changes to vectors during adaptive meshing
– for providing “natural” data access in various parts of code

— multiple variable quantities (e.g., different “centerings”) grouped into a
single variable is a very useful capability for complex problems

SAMRAI Patch Hierarchy
Mesh “Patches”

Array of Data
Components

0
1

N

2

“Node” data

“Cell” data

SAMRAI vectors allow AMR data to be
used “natively” by solver libraries

Package
SAMRAIVector

SAMRAIVector *
Translate package
calls to SAMRAI
Vector routines

Package
AbstractVector

Package Vector
interface

NodeDataOps

double dot()
double l1Norm()

CellDataOps

double dot()
double l1Norm()

SAMRAI Vector
PatchHierarchy *

Array of
vector kernel

operations

Array of
patch data

Indices
0
2

Supported Packages:
• PETSc,
• SUNDIALS(KINSOL,

PVODE, IDA)
Pernice, Hornung, “Newton-Krylov-FAC Methods for Problems
Discretized on Locally-Refined Grids”, Comput. Viz. Sci. (submitted)

Concluding remarks
AMR is an increasingly important technology for large-scale science &
engineering problems that exhibit behavior requiring fine local grids to resolve
New applications require expansion of current AMR methodologies
— New numerical and computational algorithms
— Combining traditional array-based data with irregular data representations
— Complex geometry is increasingly important
— Increased demands on AMR support software libraries

– AMR library usage across diverse applications requires decoupling core
software infrastructure from specific application needs

– AMR libraries must interoperate with other software packages – solver
libraries, grid & geometry generation libraries

Many challenges remain:
— Error estimation, dynamic load balancing, managing AMR overhead
— Multiphysics problems that combine algorithms with different numerical

properties and performance characteristics

